Mechanical and Electrical Characterization of Piezoelectric Artificial Cochlear Device and Biocompatible Packaging

نویسندگان

  • Youngdo Jung
  • Jun-Hyuk Kwak
  • Hanmi Kang
  • Wandoo Kim
  • Shin Hur
چکیده

This paper presents the development of a piezoelectric artificial cochlea (PAC) device capable of analyzing vibratory signal inputs and converting them into electrical signal outputs without an external power source by mimicking the function of human cochlea within an audible frequency range. The PAC consists of an artificial basilar membrane (ABM) part and an implantable packaged part. The packaged part provides a liquid environment through which incoming vibrations are transmitted to the membrane part. The membrane part responds to the transmitted signal, and the local area of the ABM part vibrates differently depending on its local resonant frequency. The membrane was designed to have a logarithmically varying width from 0.97 mm to 8.0 mm along the 28 mm length. By incorporating a micro-actuator in an experimental platform for the package part that mimics the function of a stapes bone in the middle ear, we created a similar experimental environment to cochlea where the human basilar membrane vibrates. The mechanical and electrical responses of fabricated PAC were measured with a laser Doppler vibrometer and a data acquisition system, and were compared with simulation results. Finally, the fabricated PAC in a biocompatible package was developed and its mechanical and electrical characteristics were measured. The experimental results shows successful frequency separation of incoming mechanical signal from micro-actuator into frequency bandwidth within the 0.4 kHz-5 kHz range.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Output Voltage and Mechanical Stability of a Piezoelectric Nanogenerator Based on ZnO Nanowire

The output of a piezoelectric nanogenerator based on ZnO nanowire is largely affected by the shape of nanowire. In order to obtain mechanically stable nanogenerator with high performance, the investigation of mechanical and electrical characteristics related to the nanowires and materials used in nanogenerators are of great interest and significance. This paper presents the various behavior of ...

متن کامل

Investigating Output Voltage and Mechanical Stability of a Piezoelectric Nanogenerator Based on ZnO Nanowire

The output of a piezoelectric nanogenerator based on ZnO nanowire is largely affected by the shape of nanowire. In order to obtain mechanically stable nanogenerator with high performance, the investigation of mechanical and electrical characteristics related to the nanowires and materials used in nanogenerators are of great interest and significance. This paper presents the various behavior of ...

متن کامل

Development and Characterization of Piezoelectric Artificial Cochlear with Micro Actuator Mimicking Human Cochlear

This paper presents the development of piezoelectric artificial cochlear (P-AC) capable of analyzing incoming acoustic or mechanical signals without external power source. The P-AC consists of membrane part and package part. The package part provides liquid environment through which the incoming signal is transmitted to membrane part. The membrane part responds to the transmitted signal and loc...

متن کامل

Mechanical Performance and Metrolocigal Characterization of Mems Accelerometers and Application in Modal Analysis

MEMS (Micro-Electro-Mechanical-System) technology is providing inertial sensors to industry, with a low cost manufacturing technology and miniature dimensions capabilities (few millimeters). Nowadays MEMS sensors are widely used in low-accuracy level applications (typically in the automotive field), where cost and dimensions are priority advantages. Starting from these considerations chip produ...

متن کامل

Piezoelectric materials mimic the function of the cochlear sensory epithelium.

Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in respons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015